Credit Card Fraud Detection Using Meta-Learning: Issues and Initial Results

نویسندگان

  • Salvatore J. Stolfo
  • David W. Fan
  • Andreas L. Prodromidis
  • Philip K. Chan
چکیده

We describe initial experiments using meta-learning techniques to learn models of fraudulent credit card transactions. Our experiments reported here are the first step towards a better understanding of the advantages and limitations of current meta-learning strategies on real-world data. We argue that, for the fraud detection domain, fraud catching rate (True Positive rate) and false alarm rate (False Positive rate) are better metrics than the overall accuracy when evaluating the learned fraud classifiers. We show that given a skewed distribution in the original data, artificially more balanced training data leads to better classifiers. We demonstrate how meta-learning can be used to combine different classifiers and maintain, and in some cases, improve the performance of the best classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit Card Fraud Detection using Data mining and Statistical Methods

Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Combination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions

As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...

متن کامل

Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection

Very large databases with skewed class distributions and non-unlform cost per error are not uncommon in real-world data mining tasks. We devised a multi-classifier meta-learning approach to address these three issues. Our empirical results from a credit card fraud detection task indicate that the approach can significantly reduce loss due to illegitimate transactions.

متن کامل

Improving Credit Card Fraud Detection using a Meta-Classification Strategy

One of the issues facing credit card fraud detection systems is that a significant percentage of transactions labeled as fraudulent are in fact legitimate. These "false alarms" delay the detection of fraudulent transactions and can cause unnecessary concerns for customers. In this study, over 1 million unique credit card transactions from 11 months of data from a large Canadian bank w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997